Handler机制回顾
前言
最近这段时间,回过头去看一些以前学习过的知识,真的是同样的代码有不同的感受,以前看不懂没理解的地方,慢慢地可以更加深入地理解了
应用启动流程
应用进程的启动流程主要为:
- Launcher-> startActivity
- AMS-> startActivity
- Zygote-> fork进程
- ActivityThread-> main
- ActivityThread-> attach
- handleBindApplication
- attachBaseContext
- installContentProviders
- Application-> onCreate
在应用启动过程中给我们能拿到回调接口的只有attachBaseContext和onCreate,而在ActivityThread的main函数里还会做主线程的Looper的prepare,然后开启循环
而这就是最早的对Looper的初始化工作
Looper
ActivityThread-> main
public static void main(String[] args) {
// ......
Looper.prepareMainLooper();
Looper.loop();
// ......
}
Looper-> prepareMainLooper
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
通过prepare方法把主线程的Looper设置到ThreadLocal中,然后用静态成员sMainLooper保存一份副本
Looper-> prepare
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
使用Looper中的静态ThreadLocal保存一个Looper对象,保证了多线程读共享数据的安全问题,不需加锁就可以同步访问,而且保证了一个线程只有一个Looper对象
Looper
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
在Looper创建的时候会创建一个MessageQueue,然后储存当前的线程
Looper-> loop
public static void loop() {
// 获取当前线程的Looper
final Looper me = myLooper();
// 为空抛出异常
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
// 获取Looper中的MessageQueue
final MessageQueue queue = me.mQueue;
// ......
// 开启死循环
for (;;) {
// 从MessageQueue中获取下一个Message
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
// 可以通过向Looper注册一个Logging,在获取Message的时候用Logging打印信息
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
// 获取msg的traget,也执行handler的dispatchMessage方法
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (slowDispatchThresholdMs > 0) {
final long time = end - start;
if (time > slowDispatchThresholdMs) {
Slog.w(TAG, "Dispatch took " + time + "ms on "
+ Thread.currentThread().getName() + ", h=" +
msg.target + " cb=" + msg.callback + " msg=" + msg.what);
}
}
// 用logging打印信息
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// ......
// 把Message回收到池中
msg.recycleUnchecked();
}
}
主要的流程就是:
- 从MessageQueue中获取下一个Message
- 获取msg的trage,执行消息分发
- 把Message回收到池中
这里还有一个关注点就是Logging,Looper对外暴露接口用于设置Logging,而这个Logging可以用于打印堆栈信息,从而定位耗时代码
## Handler
Handler()
public Handler() {
this(null, false);
}
Handler(Callback callback, boolean async)
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
// 打印log,提示Handler内存泄漏
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
// 获取当前线程的Looper
mLooper = Looper.myLooper();
// 如果Looper为空就抛出异常
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
// 赋值操作
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
Handler-> sendMessageAtTime
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
handler中有一系列sendMessage以及post方法,但是最后都会转调Handler的sendMessageAtTime
Handler-> enqueueMessage
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
会给Message设置一个target,这个target就是发送这个Message的Handler,然后如果Handler设置了异步,就会给这个Message设置异步,而最后就是转调enqueueMessage把Message添加到MessageQueue中
然后在Looper的loop方法中会死循环拿到Message,然后根据target进行分发,而这个target就是入队前设置进去的
Handler-> dispatcherMessage
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
首先先判断Message中的callback是否存在,如果Message的callback存在就,直接执行callback的run方法,这种情况针对post一个Runnable的情况
然后如果Handler中的mCallback不为空时,则调用mCallback的handleMessage方法
最后则调用Handler的handleMessage方法
Handler-> handleCallback
private static void handleCallback(Message message) {
message.callback.run();
}
MessageQueue
MessageQueue
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
// 初始化native层的MessageQueue,然后存储它的地址到mPtr中
mPtr = nativeInit();
}
MessageQueue-> enqueueMessage
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
// p==null代表MessageQueue为空,或者msg的触发时间是队列中最早的
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
// 阻塞需要唤醒
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
// 将消息按时间顺序插入到MessageQueue
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
// 唤醒队列
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
MessageQueue中的Message是按照一定的时间顺序进行排列的,当需要插入消息时,会从队头开始遍历,直到找到消息应该插入的合适位置,以此保证所有消息的时间顺序
MessageQueue-> next
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
// 阻塞操作,等待nextPollTimeoutMillis时长,或者消息队列被唤醒,都会返回
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
// 如果设置了同步屏障,在消息队列中找下一个异步消息
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
// 当异步消息触发时间大于当前时间,则设置下一次轮询的超时时长
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
// 获取一条消息并返回
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
// 设置消息的使用状态,即flags |= FLAG_IN_USE
msg.markInUse();
return msg;
}
} else {
// No more messages.
// 没有消息
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
// 如果消息队列正在退出,返回null
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
// 当消息队列为空,或者消息队列有第一个消息的时候
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
// 执行idle handlers
// 执行完成后,重置pendingIdleHandlerCount为0
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
// 去掉handler的引用
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
// idle时执行
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
// 重置idle handler个数为0,以保证不会再次重复运行
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
// 当调用一个空闲handler时,一个新message能够被分发
// 因此无需等待可以直接查询pending message
nextPollTimeoutMillis = 0;
}
}
nativePollOnce是阻塞操作,其中nextPollTimeoutMillis代表下一个消息到来前,还需要等待的时长,当nextPollTimeoutMillis = -1时,表示消息队列中无消息,会一直等待下去
当处于空闲时,往往会执行IdleHandler中的方法,当nativePollOnce返回后,next从mMessages中提取一个消息
MessageQueue-> quit
void quit(boolean safe) {
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
// 防止多次执行退出操作
if (mQuitting) {
return;
}
mQuitting = true;
if (safe) {
// 移除尚未触发的所有消息
removeAllFutureMessagesLocked();
} else {
// 移除所有的消息
removeAllMessagesLocked();
}
nativeWake(mPtr);
}
}
这是在Looper创建的时候就留下的伏笔,一个safe的参数,作用于MessageQueue的quit方法:
- 如果safe为true:移除尚未触发的所有消息
- 如果safe为false:移除所有消息
小结
Handler是一个典型的生产者消费者模式的体现,Handler把Message发送到MessageQueue中,然后Looper开启循环不断从MessageQueue中获取下一条Message,然后找到Message的target进行分发,而当MessageQueue为空时则阻塞,等待下一条消息到来的时间,没有消息就一直等待,直到有新的消息添加到MessageQueue中,就会执行唤醒,而且唤醒的时候还有移除同步屏障的时候,而等待唤醒的操作都是由native层来完成的
而下半部分主要就针对native层的等待唤醒机制进行分析,主要还是在Java层中调用的3个native方法的分析:
nativeInit,nativeWake,nativePollOnce
MessageQueue-> nativeInit
android_os_MessageQueue.cpp-> android_os_MessageQueue_nativeInit
static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
// 初始化native层Message
NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
// 增加引用计数
nativeMessageQueue->incStrong(env);
return reinterpret_cast<jlong>(nativeMessageQueue);
}
NativeMessageQueue
NativeMessageQueue::NativeMessageQueue()
: mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
// 获取当前线程的Looper
mLooper = Looper::getForThread();
if (mLooper == NULL) {
// 创建一个native层的Looper
mLooper = new Looper(false);
// 把这个Looper设置到当前线程中
Looper::setForThread(mLooper);
}
}
在native层的MessageQueue的初始化工作中会创建一个native层的Looper,而native层的Looper实际上和Java层的Looper是没有关联的,只是在native层实现了类似的逻辑,而真正构建关联的只有MessageQueue
Looper
Looper::Looper(bool allowNonCallbacks) :
mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
// 构建唤醒事件的fd
mWakeEventFd = eventfd(0, EFD_NONBLOCK);
AutoMutex _l(mLock);
// 重建epoll事件
rebuildEpollLocked();
}
Looper-> rebuildEpollLocked
void Looper::rebuildEpollLocked() {
if (mEpollFd >= 0) {
// 关闭旧的epoll实例
close(mEpollFd);
}
// 创建新的epoll实例
mEpollFd = epoll_create(EPOLL_SIZE_HINT);
struct epoll_event eventItem;
// 把未使用的数据区域进行置0操作
memset(& eventItem, 0, sizeof(epoll_event));
//可读事件
eventItem.events = EPOLLIN;
eventItem.data.fd = mWakeEventFd;
// 将唤醒事件(mWakeEventFd)添加到epoll实例(mEpollFd)
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
// ......
}
首先先关闭掉旧的Epoll实例,然后调用epoll_create函数创建一个新的epoll实例
然后调用epoll_ctl函数去对mWakeEventFd这个唤醒事件添加一个可读的事件
MessageQueue-> nativePollOnce
android_os_MessageQueue-> android_os_MessageQueue_nativePollOnce
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj, jlong ptr, jint timeoutMillis) {
// 将Java层传递下来的mPtr转换为nativeMessageQueue
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->pollOnce(env, obj, timeoutMillis);
}
NativeMessageQueue-> pollOnce
void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
// ......
mLooper->pollOnce(timeoutMillis);
// ......
}
Looper-> pollOnce
inline int pollOnce(int timeoutMillis) {
return pollOnce(timeoutMillis, NULL, NULL, NULL); 【5】
}
Looper-> pollOnce
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
int result = 0;
for (;;) {
// ......
result = pollInner(timeoutMillis);
}
}
Looper-> pollInner
int Looper::pollInner(int timeoutMillis) {
// ......
// fd最大个数为16
struct epoll_event eventItems[EPOLL_MAX_EVENTS];
// 等待事件发生或者超时,在nativeWake函数,向管道写端写入字符,则该方法会返回;
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
// ......
for (int i = 0; i < eventCount; i++) {
int fd = eventItems[i].data.fd;
uint32_t epollEvents = eventItems[i].events;
if (fd == mWakeEventFd) {
if (epollEvents & EPOLLIN) {
// 已经唤醒了,则读取并清空管道数据
awoken();
}
}
// ......
return result;
}
在pollInner函数中找到我想看的逻辑,就是用epoll_wait等待事件的上报,就在这里对在native层构建的Looper中mWakeEventFd进行监听
然后已经唤醒之后会读取并清空管道数据
Looper-> awoken
void Looper::awoken() {
uint64_t counter;
//不断读取管道数据,目的就是为了清空管道内容
TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t)));
}
MessageQueue-> nativeWake
android_os_MessageQueue-> android_os_MessageQueue_nativeWake
static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->wake();
}
NativeMessageQueue-> wake
void NativeMessageQueue::wake() {
mLooper->wake();
}
Looper-> wake
void Looper::wake() {
uint64_t inc = 1;
// 向管道mWakeEventFd写入字符1
ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
if (nWrite != sizeof(uint64_t)) {
if (errno != EAGAIN) {
ALOGW("Could not write wake signal, errno=%d", errno);
}
}
}
其中TEMP_FAILURE_RETRY是一个宏定义, 当执行write
失败后,会不断重复执行,直到执行成功为止
参考资料: